Langsung ke konten utama

Teori Kuantum Planck

Perkembangan teori tentang radiasi mengalami perubahan besar  pada saat Planck menyampaikan teorinya tentang radiasi benda hitam. Planck mulai bekerja pada tahun 1900. Planck mulai  mempelajari sifat dasar dari getaran molekul-molekul pada dinding rongga benda hitam. Dari hasil pengamatannya Planck membuat simpulan sebagai berikut.
Setiap benda yang mengalami radiasi akan memancarkan energinya secara diskontinu (diskrit) berupa paket-paket energi. Paket-paket energi ini dinamakan kuanta (sekarang dikenal sebagai foton).
Energi setiap foton sebanding dengan frekuensi gelombang radiasi dan dapat dituliskan :
E = h f                    
dengan  :  E  =  energi foton (joule)
                  f   =  frekuensi foton (Hz)
                  h  =  tetapan Planck (h = 6,6.10-34 Js)

Jika suatu gelombang elektromegnetik seperti cahaya memiliki banyak foton maka energinya memenuhi hubungan berikut.
        E = nhf
Persamaan yang sangat berkaitan dengan hubungan di atas adalah kecepatan cahaya : c = λ .f.  Besarnya c = 3. 108 m/s. Pandangan Planck inilah yang dapat merombak pandangan fisika klasik dan mulai saat itu diakui sebagai batas munculnya teori modern dan dikenal dengan teori kuantum Planck.
Hipotesis kuantum Planck telah berhasil memadukan teori Wien dan Rayleigh-Jeans. Gambar  berikut memperlihatkan perbandingan teori Wien, Rayleigh-Jeans, dan Max Planck untuk menjelaskan radiasi benda hitam. Akan tetapi, meskipun berhasil menjelaskan radiasi benda hitam, hipotesis kuantum Planck tidak begitu menarik bagi para ilmuwan sebelum Einstein menggunakannya untuk menjelaskan efek fotolistrik.


CONTOH  3
Sinar jingga dengan panjang gelombang 6600 Å dipancarkan dari suatu benda hitam yang mengalami radiasi. Tentukan energi  foton yang terkandung pada sinar jingga tersebut?
Penyelesaian
λ = 6600 Å = 6,6.10-7 m
c = 3.108 m/s
h = 6,6.10-34 Js
Kuanta energi sinar jingga memenuhi :
                      c         3.108
E = hf = h ------- = -------------- = 3.10-19 joule
                     λ         6,6.10-7

LATIHAN SOAL
Cahaya yang dipancarkan melalui radiasi benda hitam memiliki panjang gelombang 330 nm. Tentukan :
a.  energi foton dari cahaya tersebut,

b.  jumlah foton jika energinya sebesar 12. 10 -6joule.


Postingan populer dari blog ini

Perkembangan Teori Atom

LINK FISIKA | HOME | TEORI ATOM DALTON | PERCOBAAN THOMSON | TEORI ATOM THOMSON | PERCOBAAN RUTHERFORD | TEORI ATOM RUTHERFORD | SPEKTRUM ATOM HIDROGEN | TEORI ATOM BOHR | TEORI ATOM MEKANIKA KUANTUM | BIL. KUANTUM UTAMA | BIL. KUANTUM ORBITAL | BIL. KUANTUM MAGNETIK | BIL. KUANTUM SPIN | EFEK ZEMAN | KONFIGURASI ELEKTRON |     HANDOUTS TEORI ATOM

Teori Atom Dalton

Teori tentang atom telah muncul sebelum Masehi. Contohnya adalah definisi atom menurut Demokretus. Demokritus membuat simpulan : Suatu zat dapat dibagi menjadi yang lebih kecil hingga mendapatkan bagian yang paling kecil dan tidak dapat dibagi lagi dan dinamakan atom. Kata atom ini berasal dari bahasa Yunani   “atomos” yang berarti tak dapat dipotong. Kemudian muncul lagi setelah Masehi yaitu: John Dalton   (1766–1844), seorang ilmuwan berkebangsaan Inggris dengan didukung dari hasil eksperimen eksperimennya mengembangkan konsep atom dari Demokritus yang kemudian mengemukaan teori tentang atom. Secara garisbesar teori atom Dalton dapat disimpulkan sebagai berikut : Atom merupakan bagian terkecil dari suatu zat yang tidakbisa dibagi lagi.   Atom-atom penyusun zat tertentu memiliki sifat yangsama.   Atom unsur tertentu tidak bisa berubah menjadi atomunsur lain.   Dua atom atau lebih dapat bersenyawa (bereaksi)membentuk molekul. Dalam reaksi kimia perb...

Model Atom Bohr

Model atom Rutherford gagal menjelaskan tentang kestabilan atom dan terjadinya spektrum garis atom hidrogen. Seorang ilmuwan Fisika dari Denmark, Niels Bohr dapat menjelaskan spektrum garis atom hidrogren. Bohr mengemukakan teori atomnya untuk menutupi kelemahan atom Rutherford dengan mengemukakan tiga postulatnya yaitu : a.      Elektron berotasi mengelilingi inti tidak pada sembarang lintasan, tetapi pada lintasan-lintasan tertentu tanpa membebaskan energi. Lintasan ini disebut   lintasan stasioner dan memiliki energi tertentu. b.       Elektron dapat berpindah dari lintasan yang satu ke lintasan yang lain. Jika elektron pindah dari lintasan berenergi rendah (lintasan dalam) ke lintasan berenergi tinggi (lintasan luar) akan menyerap energi dan sebaliknya akan memancarkan energi. Energi yang dipancarkan atau diserap elektron sebesar hf. c.     Lintasan-lintasan yang diperkenankan elektron adalah lintasan-lintas...