Langsung ke konten utama

PEMANFAATAN RADIOISOTOP DALAM TEKNOLOGI

Dewasa ini perkembangan teknologi nuklir terjadi sangat pesat. Isotop radioaktif atau yang lebih dikenal dengan sebutan radioisotop, telah banyak dibuat yang digunakan untuk berbagai keperluan dalam penelitian maupun dalam bidang industri, pertanian, kedokteran. Radioisotop yang terdapat di alam tidak terlalu banyak termasuk U-235, radium-226, kalium-40, rubidium-87, dan carbon-14. Pembuatan radioisotop dilakukan di dalam reaktor pembiak (reaktor atom yang khusus membuat radioisotop).
Sebagai penghasil radioisotop, reaktor atom dapat menghasilkan berbagai macam radioisotop yang dapat dimanfaatkan untuk banyak keperluan. Selain itu reaktor atom juga dapat menghasilkan neutron yang dapat digunakan untuk penelitian. Unsur radioaktif yang tersedia di alam tidak memadai untuk memenuhi kebutuhan tertentu yang menghendaki sifat-sifat tertentu dari unsur radioaktif tersebut. Misalnya mengenai waktu paruhnya dan jenis radiasinya. Oleh karena itu, dibuat unsur radioaktif buatan yang sesuai dengan kebutuhannya.
1) Bidang Kedokteran
Dalam bidang kedokteran, radioisotop dapat digunakan sebagai diagnosisi maupun sebagai terapi, midalnya untuk diagnosis kanker ataupun diagnosis fungsi kerja jantung.  Kobal Co-60 dapat digunakan sebagai penyinaran kanker. Co-60 ini sebagai pengganti radiasi sinar-X jika di dalam pengobatan tersebut memerlukan intensitas sinar yang lebih kuat. Demikian juga produksi yang berlebihan dari hormon gondok dapat dikendalikan dengan cara si pasien meminum suatu larutan yang mengandung iodium I-131. Iodium akan sampai pada kelenjar gondok dan dapat memberikan radioterapi internal.
2) Bidang Industri
Penerapan teknik nuklir dalam menunjang industri dan konstruksi sudah sangat luas, misalnya dalam pemeriksaan material menggunakan teknik radiografi dengan sinar G atau sinar-X  dipancarkan dari radioisotop. Co-60 atau Ir-92 dilewatkan melalui material yang akan diperiksa, sebagian dari sinar tersebut akan diteruskan dan sisanya akan diserap tanpa merusak material. Selembar film dipasang di belakang material guna mendeteksi sianr yang berhasil menembus. Dari tingkat kehitaman film hasil proses dapat diekathui keadaan serta struktur yang ada pada material tersebut. Selain itu, teknologi nuklir juga digunakan dalam industrik polim-erisasi radiasi, yaitu industri pengolahan bahan mentah menjadi bahan setengah jadi atau bahan jadi dengan ban-tuan sinar radiasi untuk mempermudah dan mempercepat reaksi kimia. Bahan yang diolah dapat berupa polimer lateks (karet alam), kayu, polietilen, polipropilen, dan sebagainya.  
3) Bidang hidrologi
a)  Pengukuran laju air
Radioisotop dapat digunakan untuk mengukur laju alir atau debit aliran fluida dalam pipa, saluran terbuka, sungai, serta air dalam tanah. Dasar pengukuran ini adalah meng-gunakan perunut radioaktif. Akibat adanya aliran, konsen-trasi perunut radioaktif dalam jangka waktu tertentu akan berubah. Debit aliran fluida diperoleh dari pengukuran perubahan inetnsitas radiasi dalam aliran tersebut dalam jangka waktu tertentu.
b)  Pengukuran kandungan air tanah
Suatu alat yang memiliki sumber neutron cepat dimasuk-kkan ke dalam sebuah sumur sehingga terjadi tumbukan antara neutron cepat dan hidrogen dari air (H2O). Tum-bukan ini akan menghasilkan neutron lambat yang dapat dideteksi dengan detector.   Jumlah kandngan air dalam tanah dapat ditentukan dari cacahan yang terdeteksi pada detector.
c)  Pendeteksi kebocoran pipa
Radioisotop dapat pula digunakan untuk mendeteksi kebocoran piap penyalur yang terbenam di dalam tanah.Mula-mula perunut radioaktif dimasukkan ke dalam aliran, kemudian diikuti dari atas melalui suatu detector. Jika di suatu tempat terdapat cacahan radioaktif yang tinggi, berarti di tempat tersebut terdapat kebocoran.
4) Bidang kelautan
radioisotop telah digunakan untuk menganalisis arus laut dan arus pantai. Suatu perunut radioisotop Iodin-131 disemprotkan ke dalam air laut di tengah-tengah suatu susunan melingkar detektordetektor yang peka. Berbagai detektor itu menangkap jumlah radioisotop yang sampai padanya. Dengan demikian dimungkinkan dapat ditentukannya arah maupun kecepatan arus laut dengan tepat dan cepat.
5) Bidang Penelitian
Pengunaan radioisotop di bidang penelitian ilmiah misalnya di bidang ilmu pengetahuan Biologi para ahli telah menggunakan besi-59 untuk mempelajari umur sel-sel darah merah manusia. Sel darah merah yang ditandai dengan besi-59 diketahui mempunyai rentang hidup rata-rata 120 hari.

Seseorang yang mendapat sinar radiasi dalam waktu yang lama akan menyebabkan timbulnya penyakit di dalam tubuh, di antaranya kanker, leukimia, dan gangguan saraf. Hal ini dikarenakan radiasi sinar radioaktif dapat menyebabkan perubahan pada sel-sel tubuh.

Penggunaan radioisotop, di samping mendatangkan banyak manfaat, juga dapat mendatangkan masalah. Masalah yang dihadapi sekarang ini di antaranya, masalah pengontrolandan pembuangan limbah nuklir. Pembuatan persenjataan nuklir dari negara-negara maju maupun negara yang berkembang  yang tidak dikontrol akan membahayakan bagi kehidupan. Misalnya dengan terjadinya perang antarnegara yang menggunakan persenjataan nuklir. Di samping itu pembuangan sampah nuklir yang berasal dari reaktor atom akan menjadi masalah jika dibuang sembarangan, karena limbah tersebut masih bersifat radioaktif. Radiasi yang dipancarkan akan membahayakan lingkungan sekitarnya.


Postingan populer dari blog ini

Transformasi Lorentz (relativitas Kecepatan)

Pada transformasi Galileo telah dikemukakan bahwa selang waktu pengamatan terhadap suatu peristiwa yang diamati oleh pengamat yang diam dengan pengamat yang relatif bergerak terhadap peristiwa adalah sama ( t = t’ ) . Hal inilah yang menurut Einstein tidak benar, selang waktu pengamatan antara pengamat yang diam dan pengamat yang bergerak relatif adalah tidak sama ( t ≠ t’ ) . Transformasi Lorentz pertama kali dikemukaan oleh Hendrik A. Lorentz, seorang fisikawan dari Belanda   pada tahun 1895. Karena waktu pengamatan oleh pengamat yang diam pada kerangka acuan S dan pengamat yang bergerak pada kerangka acuan S’ hubungan transformasi pada Galileo haruslah mengandung suatu tetapan pengali   yang disebut tetapan transformasi.   Sehingga persamaan yang menyatakan hubungan antara koordinat pada kerangka acuan S dan S’ dituliskan sebagai berikut : Transformasi Lorentz          x’ =   ϒ (x – v.t), y’ = y, z’ = z    dan    t’ ≠ t                   .... (9.6) Kebali

Gaya Pemulih pada Pegas

1.   Gaya Pemulih   Gaya pemulih dimiliki oleh setiap benda elastis yang terkena gaya sehingga benda elastis tersebut berubah bentuk. Gaya yang timbul pada benda elastis untuk menarik kembali benda yang melekat padanya disebut gaya pemulih. Akibat gaya pemulih tersebut, benda akan melakukan gerak harmonik sederhana. Dengan demikian, pada benda yang melakukan gerak harmonik sederhana bekerja gaya pemulih yang selalu mengarah pada titik kesetimbangan benda. a. Gaya Pemulih pada Pegas Pegas adalah salah satu contoh benda elastis. Oleh karena sifat elastisnya ini, suatu pegas yang diberi gaya tekan atau gaya regang akan kembali ke keadaan setimbangnya mula-mula apabila gaya yang bekerja padanya dihilangkan. Perhatikan gambar, anggap mula-mula benda berada pada posisi y = 0 sehingga pegas tidak tertekan atau teregang. Posisi seperti ini dinamakan posisi keseimbangan. Ketika benda ditekan ke bawah (y = –) pegas akan menarik benda ke atas, menuju posisi keseimbangan. Sebaliknya jik

Teori Kuantum Planck

Perkembangan teori tentang radiasi mengalami perubahan besar  pada saat Planck menyampaikan teorinya tentang radiasi benda hitam. Planck mulai bekerja pada tahun 1900. Planck mulai  mempelajari sifat dasar dari getaran molekul-molekul pada dinding rongga benda hitam. Dari hasil pengamatannya Planck membuat simpulan sebagai berikut. Setiap benda yang mengalami radiasi akan memancarkan energinya secara diskontinu (diskrit) berupa paket-paket energi. Paket-paket energi ini dinamakan kuanta (sekarang dikenal sebagai foton) . Energi setiap foton sebanding dengan frekuensi gelombang radiasi dan dapat dituliskan : E = h f                     dengan  :  E  =  energi foton (joule)                   f   =  frekuensi foton (Hz)                   h  =  tetapan Planck (h = 6,6.10 -34 Js) Jika suatu gelombang elektromegnetik seperti cahaya memiliki banyak foton maka energinya memenuhi hubungan berikut.         E = nhf Persamaan yang sangat berkaitan dengan hubungan di atas adal