Langsung ke konten utama

Hukum Pergeseran Wien

Pada pengukuran intensitas radiasi benda hitam (I) pada berbagai nilai panjang gelombang (λ) dapat digambarkan grafik seperti pada 

Gambar 7.1. Perubahan intensitas diukur pada benda hitam yang memiliki suhu tetap T, tetapi λ berbeda-beda. Intensitas tersebut terlihat meningkat seiring dengan peningkatan λ hingga mencapai nilai maksimum. Kemudian intensitas menurun kembali seiring penambahan λ. Panjang gelombang energi radiasi pada saat intensitasnya maksimum dinamakan λm (panjang gelombang maksimum).
Pada pengukuran itu Wilhelm Wien menemukan adanya pergeseran panjang gelombang maksimum saat suhu benda hitam berubah. Kenaikan suhu benda hitam menyebabkan panjang  gelombang maksimum yang dipancarkan benda akan mengecil. Hubungan ini dapat dituliskan seperti persamaan berikut.
λm T = c
dengan :  λm = panjang gelombang intensitas radiasi maksimum (m)
                   T   =  suhu mutlak benda (K)
                   c   =  tetapan Wien (2,90.10-3 mK)

CONTOH 2
Sebuah benda hitam meradiasikan gelombang elektromagnetik dengan panjang gelombang 8700 Å pada saat intensitas radiasinya maksimum. Berapakah suhu permukaan benda yang memancarkan gelombang tersebut?
Penyelesaian
λm   =  8700 Å = 8,7.10-7 m
c   =  2,9.10-3 mK

Suhu benda dapat ditentukan sebagai berikut.
λm.T = c
          c         2,9.10-3
T = ------- = -------------- = 3000 K atau 27270C
        λm         8,7.10-7


LATIHAN  SOAL
1.   Lampu pijar berbentuknya mendekati bola. Jari-jari lampu pijar pertama adalah empat kali jari – jari lampu kedua. Suhu lampu pijar pertama dan kedua masing-masing 27OC dan 127OC. Berapakah perbandingan daya lampu pertama dengan daya lampu kedua ?
2.  Sebuah benda hitam yang bersuhu 27O C dapat memancarkan radiasi dengan  intensitas sebesar 90 watt/m2. Luas penampangnya 50 cm2. Berapakah :
a.   daya radiasi,
b.  intensitas radiasinya jika suhunya dinaikkan hingga menjadi 327O C ?

3.   Diketahui tetapan Wien = 2,9 x 10-3mK. Berapakah panjang gelombang elektromagnetik yang membawa radiasi kalor maksimum dari sebuah benda yang bersuhu 127OC ?



Postingan populer dari blog ini

Perkembangan Teori Atom

LINK FISIKA | HOME | TEORI ATOM DALTON | PERCOBAAN THOMSON | TEORI ATOM THOMSON | PERCOBAAN RUTHERFORD | TEORI ATOM RUTHERFORD | SPEKTRUM ATOM HIDROGEN | TEORI ATOM BOHR | TEORI ATOM MEKANIKA KUANTUM | BIL. KUANTUM UTAMA | BIL. KUANTUM ORBITAL | BIL. KUANTUM MAGNETIK | BIL. KUANTUM SPIN | EFEK ZEMAN | KONFIGURASI ELEKTRON |     HANDOUTS TEORI ATOM

Teori Atom Dalton

Teori tentang atom telah muncul sebelum Masehi. Contohnya adalah definisi atom menurut Demokretus. Demokritus membuat simpulan : Suatu zat dapat dibagi menjadi yang lebih kecil hingga mendapatkan bagian yang paling kecil dan tidak dapat dibagi lagi dan dinamakan atom. Kata atom ini berasal dari bahasa Yunani   “atomos” yang berarti tak dapat dipotong. Kemudian muncul lagi setelah Masehi yaitu: John Dalton   (1766–1844), seorang ilmuwan berkebangsaan Inggris dengan didukung dari hasil eksperimen eksperimennya mengembangkan konsep atom dari Demokritus yang kemudian mengemukaan teori tentang atom. Secara garisbesar teori atom Dalton dapat disimpulkan sebagai berikut : Atom merupakan bagian terkecil dari suatu zat yang tidakbisa dibagi lagi.   Atom-atom penyusun zat tertentu memiliki sifat yangsama.   Atom unsur tertentu tidak bisa berubah menjadi atomunsur lain.   Dua atom atau lebih dapat bersenyawa (bereaksi)membentuk molekul. Dalam reaksi kimia perb...

Model Atom Bohr

Model atom Rutherford gagal menjelaskan tentang kestabilan atom dan terjadinya spektrum garis atom hidrogen. Seorang ilmuwan Fisika dari Denmark, Niels Bohr dapat menjelaskan spektrum garis atom hidrogren. Bohr mengemukakan teori atomnya untuk menutupi kelemahan atom Rutherford dengan mengemukakan tiga postulatnya yaitu : a.      Elektron berotasi mengelilingi inti tidak pada sembarang lintasan, tetapi pada lintasan-lintasan tertentu tanpa membebaskan energi. Lintasan ini disebut   lintasan stasioner dan memiliki energi tertentu. b.       Elektron dapat berpindah dari lintasan yang satu ke lintasan yang lain. Jika elektron pindah dari lintasan berenergi rendah (lintasan dalam) ke lintasan berenergi tinggi (lintasan luar) akan menyerap energi dan sebaliknya akan memancarkan energi. Energi yang dipancarkan atau diserap elektron sebesar hf. c.     Lintasan-lintasan yang diperkenankan elektron adalah lintasan-lintas...