Langsung ke konten utama

Energi Potensial



Suatu benda dapat menyimpan energi karena kedudukan atau posisin benda tersebut. Contohnya, suatu beban yang diangkat setinggi  h akan memiliki energi potensial, dan busur yang ditarik / diregangkan sejauh x akan memiliki energi potensial. Dengan demikian, energi potensial adalah energi yang tersimpan dalam suatu benda akibat kedudukan atau posisi benda tersebut dan suatu saat dapat dimunculkan.


gambar 4.5


 
Energi potensial terbagi atas dua, yaitu energi potensial gravitasi dan energi potensial elastis. Energi potensial gravitasi ini timbul akibat tarikan gaya gravitasi Bumi yang bekerja pada benda. Contoh energi potensial gravitasi ini adalah seperti pada Gambar diatas. Jika massa beban diperbesar, energi potensial gravitasinya juga akan membesar. Demikian juga, apabila ketinggian benda dari tanah diperbesar, energi potensial gravitasi beban tersebut akan semakin besar. Hubungan ini dinyatakan dengan persamaan
     EP = m g h    ....................(4–3)
dengan: EP = energi potensial (joule),
                 w = berat benda (newton) = mg,
                  m = massa benda (kg),
                   g = percepatan gravitasi bumi (m/s2), dan
                    h = tinggi benda (m).

Sebuah benda yang berada pada suatu ketinggian tertentu apabila dilepaskan, akan bergerak jatuh bebas sebab benda tersebut memiliki energi potensial gravitasi. Energi potensial gravitasi benda yang mengalami jatuh bebas akan berubah karena usaha yang dilakukan oleh gaya berat.
Perhatikanlah Gambar 4.6. Apabila tinggi benda mula-mula  h1 , usaha yang dilakukan oleh gaya berat  benda (W)untuk mencapai tempat setinggi h2  adalah sebesar:
gambar 4.6
 

      W = mgh2 – mgh1
      W = mg (h2 – h1) ..................... (4–4)
      dengan: Wb = usaha oleh gaya berat.
      W = Δ EP     ........................... (4–5)
contoh
Mula-mula, sebuah benda dengan massa 2 kg berada di permukaan tanah. Kemudian, benda itu dipindahkan ke atas meja yang memiliki ketinggian 1,25 m dari tanah. Berapakah perubahan energi potensial benda tersebut? (g = 10 m/s2).
Jawab
Diketahui: m = 2 kg, h2 = 1,25 m, dan g = 10 m/s2.
Perubahan energi potensial benda:
ΔEP  =  mg (h2 – h1)
          =  (2 kg) (10 m/s2) (1,25 m – 0 m)  = 25 joule
Jadi, perubahan energi potensialnya 25 joule.
2. Sebuah benda berada pada ketinggian 40 m dari tanah. Kemudian, benda itu jatuh bebas. Berapakah usaha yang dilakukan oleh gaya berat hingga benda sampai ke tanah? Diketahui massa benda adalah 1,5 kg dan percepatan gravitasi bumi 10 m/s2.
Jawab
Diketahui: h1 = 40 m, h2 = 0, m = 1,5 kg, dan g = 10 m/s2.
W =  mgh1 – mgh2
W =  mg (h1 – h2)
W =  (1,5 kg)(10 m/s2)(40 m – 0 m)
W =  600 joule

Latihan Soal

 Bentuk energi potensial yang kedua adalah energi potensial elastis. Energi potensial adalah energi yang tersimpan di dalam benda elastis karena adanya gaya tekan dan gaya regang yang bekerja pada benda. Contoh energi potensial ini ditunjukkan pada Gambar. Besarnya energi potensial elastis bergantung pada besarnya gaya tekan atau gaya regang yang diberikan pada benda tersebut.
gambar 4.7
 

Anda telah mempelajari sifat elastis pada pegas dan telah mengetahui bahwa gaya pemulih pada pegas berbanding lurus dengan pertambahan panjangnya. Pegas yang berada dalam keadaan tertekan atau teregang dikatakan memiliki energi potensial elastis karena pegas tidak berada dalam keadaan posisi setimbang. Perhatikanlah Gambar 4.8. Grafik tersebut menunjukkan kurva hubungan antara gaya dan pertambahan panjang pegas yang memenuhi Hukum Hooke. Jika pada saat Anda menarik pegas dengan gaya sebesar F1 , pegas itu bertambah panjang sebesar Δx1 . Demikian pula, jika Anda menarik pegas dengan gaya sebesar F2 , pegas akan bertambah panjang sebesar Δx2. Begitu seterusnya.
gambar 4.8
 
 
Dengan demikian, usaha total yang Anda berikan untuk meregangkan pegas adalah
W = F1.Δ x1 + F2.Δ x2
Besarnya usaha total ini sama dengan luas segitiga di bawah kurva  F terhadap Δ x sehingga dapat dituliskan
    W = ½  F. Δ x
    W = ½  (k.Δ x).Δ x
    W = ½  kΔx2  ................(4–6)
Energi potensial pegas ini juga dapat berubah karena usaha yang dilakukan oleh gaya pegas. Besar usaha yang dilakukan oleh gaya pegas itu dituliskan dengan persamaan
      W = Δ EP    ......................(4–7)
contoh
1. Sebuah pegas yang tergantung tanpa beban panjangnya 15 cm. Kemudian, ujung bawah pegas diberi beban 5 kg sehingga pegas bertambah panjang menjadi 20 cm.
Tentukanlah:
a. tetapan pegas, dan
b. energi potensial elastis pegas.
Jawab
Diketahui:  x0 = 15 cm,  x1 = 20 cm = 0,2 m, dan m = 5 kg.
2. Perhatikan grafik hubungan gaya (F) dan pertambahan panjang pegas ( x Δ ) berikut. Tentukan energi potensial elastis pegas pada saat pegas ditarik dengan gaya 50 N.
Jawab
Diketahui F = 50 N.




||PETA KONSEP||USAHA||ENERGI||ENERGI KINETIK||ENERGI POTENSIAL||ENERGI MEKANIK||HUKUM KEKEKALAN ENERGI MEKANIK|| DAYA||

Postingan populer dari blog ini

Transformasi Lorentz (relativitas Kecepatan)

Pada transformasi Galileo telah dikemukakan bahwa selang waktu pengamatan terhadap suatu peristiwa yang diamati oleh pengamat yang diam dengan pengamat yang relatif bergerak terhadap peristiwa adalah sama ( t = t’ ) . Hal inilah yang menurut Einstein tidak benar, selang waktu pengamatan antara pengamat yang diam dan pengamat yang bergerak relatif adalah tidak sama ( t ≠ t’ ) . Transformasi Lorentz pertama kali dikemukaan oleh Hendrik A. Lorentz, seorang fisikawan dari Belanda   pada tahun 1895. Karena waktu pengamatan oleh pengamat yang diam pada kerangka acuan S dan pengamat yang bergerak pada kerangka acuan S’ hubungan transformasi pada Galileo haruslah mengandung suatu tetapan pengali   yang disebut tetapan transformasi.   Sehingga persamaan yang menyatakan hubungan antara koordinat pada kerangka acuan S dan S’ dituliskan sebagai berikut : Transformasi Lorentz          x’ =   ϒ (x – v.t), y’ = y, z’ = z    dan    t’ ≠ t                   .... (9.6) Kebali

Gaya Pemulih pada Pegas

1.   Gaya Pemulih   Gaya pemulih dimiliki oleh setiap benda elastis yang terkena gaya sehingga benda elastis tersebut berubah bentuk. Gaya yang timbul pada benda elastis untuk menarik kembali benda yang melekat padanya disebut gaya pemulih. Akibat gaya pemulih tersebut, benda akan melakukan gerak harmonik sederhana. Dengan demikian, pada benda yang melakukan gerak harmonik sederhana bekerja gaya pemulih yang selalu mengarah pada titik kesetimbangan benda. a. Gaya Pemulih pada Pegas Pegas adalah salah satu contoh benda elastis. Oleh karena sifat elastisnya ini, suatu pegas yang diberi gaya tekan atau gaya regang akan kembali ke keadaan setimbangnya mula-mula apabila gaya yang bekerja padanya dihilangkan. Perhatikan gambar, anggap mula-mula benda berada pada posisi y = 0 sehingga pegas tidak tertekan atau teregang. Posisi seperti ini dinamakan posisi keseimbangan. Ketika benda ditekan ke bawah (y = –) pegas akan menarik benda ke atas, menuju posisi keseimbangan. Sebaliknya jik

Teori Kuantum Planck

Perkembangan teori tentang radiasi mengalami perubahan besar  pada saat Planck menyampaikan teorinya tentang radiasi benda hitam. Planck mulai bekerja pada tahun 1900. Planck mulai  mempelajari sifat dasar dari getaran molekul-molekul pada dinding rongga benda hitam. Dari hasil pengamatannya Planck membuat simpulan sebagai berikut. Setiap benda yang mengalami radiasi akan memancarkan energinya secara diskontinu (diskrit) berupa paket-paket energi. Paket-paket energi ini dinamakan kuanta (sekarang dikenal sebagai foton) . Energi setiap foton sebanding dengan frekuensi gelombang radiasi dan dapat dituliskan : E = h f                     dengan  :  E  =  energi foton (joule)                   f   =  frekuensi foton (Hz)                   h  =  tetapan Planck (h = 6,6.10 -34 Js) Jika suatu gelombang elektromegnetik seperti cahaya memiliki banyak foton maka energinya memenuhi hubungan berikut.         E = nhf Persamaan yang sangat berkaitan dengan hubungan di atas adal